Additive structure of non-monogenic simplest cubic fields

Magdaléna Tinková

Czech Technical University in Prague
Joint work with Daniel Gil-Muñoz.

April 18, 2023

- K algebraic number field
- d degree of K over \mathbb{Q}
- \mathcal{O}_{K} is the ring of algebraic integers in K
- K algebraic number field
- d degree of K over \mathbb{Q}
- \mathcal{O}_{K} is the ring of algebraic integers in K

Definition

K is monogenic if $\mathcal{O}_{K}=\mathbb{Z}[\gamma]$ for some $\gamma \in K$, i.e., every algebraic integer $\alpha \in \mathcal{O}_{K}$ can be expressed as

$$
\alpha=a_{0}+a_{1} \gamma+a_{2} \gamma^{2}+\cdots+a_{d-1} \gamma^{d-1}
$$

where $a_{i} \in \mathbb{Z}$ for all $0 \leq i \leq d-1$.

Examples

Example

K real quadratic field $\Rightarrow K=\mathbb{Q}(\sqrt{D})$ where $D>1$ is square-free

$$
\mathcal{O}_{K}= \begin{cases}\mathbb{Z}[\sqrt{D}] & \text { if } D \equiv 2,3(\bmod 4) \\ \mathbb{Z}\left[\frac{1+\sqrt{D}}{2}\right] & \text { if } D \equiv 1(\bmod 4)\end{cases}
$$

\rightarrow They are always monogenic.

Examples

Example

K real quadratic field $\Rightarrow K=\mathbb{Q}(\sqrt{D})$ where $D>1$ is square-free

$$
\mathcal{O}_{K}= \begin{cases}\mathbb{Z}[\sqrt{D}] & \text { if } D \equiv 2,3(\bmod 4) \\ \mathbb{Z}\left[\frac{1+\sqrt{D}}{2}\right] & \text { if } D \equiv 1(\bmod 4)\end{cases}
$$

\rightarrow They are always monogenic.

Example

$K=\mathbb{Q}(\eta)$ where η is a root of $x^{3}-x^{2}-2 x-8$ is not monogenic

The simplest cubic fields

- introduced by Shanks (1974)
- $K=\mathbb{Q}(\rho)$ where ρ is a root of $x^{3}-a x^{2}-(a+3) x-1$ with $a \in \mathbb{Z}, a \geq-1$
- they are Galois extensions
- $\mathcal{O}_{K}=\mathbb{Z}[\rho]$ for infinitely many cases of a

The simplest cubic fields

- introduced by Shanks (1974)
- $K=\mathbb{Q}(\rho)$ where ρ is a root of $x^{3}-a x^{2}-(a+3) x-1$ with $a \in \mathbb{Z}, a \geq-1$
- they are Galois extensions
- $\mathcal{O}_{K}=\mathbb{Z}[\rho]$ for infinitely many cases of a

Example

- $\mathcal{O}_{K}=\mathbb{Z}[\rho]$ if $a^{2}+3 a+9$ is square-free

The simplest cubic fields

- introduced by Shanks (1974)
- $K=\mathbb{Q}(\rho)$ where ρ is a root of $x^{3}-a x^{2}-(a+3) x-1$ with $a \in \mathbb{Z}, a \geq-1$
- they are Galois extensions
- $\mathcal{O}_{K}=\mathbb{Z}[\rho]$ for infinitely many cases of a

Example

- $\mathcal{O}_{K}=\mathbb{Z}[\rho]$ if $a^{2}+3 a+9$ is square-free
- if $a=0$, then $a^{2}+3 a+9=9$ is not square-free but still $\mathcal{O}_{K}=\mathbb{Z}[\rho]$

Monogenic simplest cubic fields

let \mathfrak{c} be the conductor of K

Theorem (Kashio, Sekigawa, 2021)

Let K be a simplest cubic fields. Then the following are equivalent:
(1) The field K is monogenic.
(2) We have $a \in\{-1,0,1,2,3,5,12,54,66,1259,2389\}$ or $\frac{a^{2}+3 a+9}{c}$ is a cube.
(3) We have $a \in\{-1,0,1,2,3,5,12,54,66,1259,2389\}$ or $a \not \equiv 3,21(\bmod 27)$ and $v_{p}\left(a^{2}+3 a+9\right) \not \equiv 2(\bmod 3)$ for all primes $p \neq 3$.

Monogenic simplest cubic fields

let \mathfrak{c} be the conductor of K

Theorem (Kashio, Sekigawa, 2021)

Let K be a simplest cubic fields. Then the following are equivalent:
(1) The field K is monogenic.
(2) We have $a \in\{-1,0,1,2,3,5,12,54,66,1259,2389\}$ or $\frac{a^{2}+3 a+9}{c}$ is a cube.
(3) We have $a \in\{-1,0,1,2,3,5,12,54,66,1259,2389\}$ or $a \not \equiv 3,21(\bmod 27)$ and $v_{p}\left(a^{2}+3 a+9\right) \not \equiv 2(\bmod 3)$ for all primes $p \neq 3$.

- If $\frac{a^{2}+3 a+9}{\mathfrak{c}}=1$, then $\mathcal{O}_{K}=\mathbb{Z}[\rho]$.

Monogenic simplest cubic fields

let \mathfrak{c} be the conductor of K

Theorem (Kashio, Sekigawa, 2021)

Let K be a simplest cubic fields. Then the following are equivalent:
(1) The field K is monogenic.
(2) We have $a \in\{-1,0,1,2,3,5,12,54,66,1259,2389\}$ or $\frac{a^{2}+3 a+9}{c}$ is a cube.
(3) We have $a \in\{-1,0,1,2,3,5,12,54,66,1259,2389\}$ or $a \not \equiv 3,21(\bmod 27)$ and $v_{p}\left(a^{2}+3 a+9\right) \not \equiv 2(\bmod 3)$ for all primes $p \neq 3$.

- If $\frac{a^{2}+3 a+9}{c}=1$, then $\mathcal{O}_{K}=\mathbb{Z}[\rho]$.
- If $\frac{a^{2}+3 a+9}{\mathfrak{c}} \neq 1$ is a cube, then $\mathcal{O}_{K}=\mathbb{Z}[\gamma]$ for some $\gamma \neq \rho$.

$$
B_{p}(k, l)=\left\{1, \rho, \frac{k+l \rho+\rho^{2}}{p}\right\} \text { where } p \text { is a prime and } 1 \leq k, l \leq p-1
$$

$B_{p}(k, l)=\left\{1, \rho, \frac{k+l \rho+\rho^{2}}{p}\right\}$ where p is a prime and $1 \leq k, l \leq p-1$

Proposition

There exist infinitely many simplest cubic fields with the integral basis $B_{p}(k, l)$ if and only if $p=3$ and $(k, l)=(1,1)$, or $p \equiv 1(\bmod 6)$ and (k, l) is one of two concrete pairs of $\left(k_{1}, l_{1}\right)$ and $\left(k_{2}, l_{2}\right)$ where values of k_{i} and l_{i} depend only on p.

$$
B_{p}(k, l)=\left\{1, \rho, \frac{k+l \rho+\rho^{2}}{p}\right\} \text { where } p \text { is a prime and } 1 \leq k, l \leq p-1
$$

Proposition

There exist infinitely many simplest cubic fields with the integral basis $B_{p}(k, l)$ if and only if $p=3$ and $(k, l)=(1,1)$, or $p \equiv 1(\bmod 6)$ and (k, l) is one of two concrete pairs of $\left(k_{1}, l_{1}\right)$ and $\left(k_{2}, l_{2}\right)$ where values of k_{i} and l_{i} depend only on p.

- $p=3$ and $p \equiv 1(\bmod 6)$ follows from the solvability of the equation $a^{2}+3 a+9 \equiv 0\left(\bmod p^{2}\right)$
$B_{p}(k, l)=\left\{1, \rho, \frac{k+l \rho+\rho^{2}}{p}\right\}$ where p is a prime and $1 \leq k, l \leq p-1$

Proposition

There exist infinitely many simplest cubic fields with the integral basis $B_{p}(k, l)$ if and only if $p=3$ and $(k, l)=(1,1)$, or $p \equiv 1(\bmod 6)$ and (k, l) is one of two concrete pairs of $\left(k_{1}, l_{1}\right)$ and (k_{2}, l_{2}) where values of k_{i} and l_{i} depend only on p.

- $p=3$ and $p \equiv 1(\bmod 6)$ follows from the solvability of the equation $a^{2}+3 a+9 \equiv 0\left(\bmod p^{2}\right)$
- solutions a_{1} and a_{2} of $a^{2}+3 a+9 \equiv 0\left(\bmod p^{2}\right)$ produce concrete values of $\left(k_{1}, l_{1}\right)$ and $\left(k_{2}, l_{2}\right)$ for which $\frac{k_{i}+l_{i} \rho+\rho^{2}}{p}$ is an algebraic integer
- K totally real number field
- \mathcal{O}_{K}^{+}set of totally positive elements $\alpha \in \mathcal{O}_{K}$, i.e., all conjugates of α are positive
- K totally real number field
- \mathcal{O}_{K}^{+}set of totally positive elements $\alpha \in \mathcal{O}_{K}$, i.e., all conjugates of α are positive

Definition

We say that $\alpha \in \mathcal{O}_{K}^{+}$is indecomposable in \mathcal{O}_{K} if it cannot be written as $\alpha=\beta+\gamma$ for any $\beta, \gamma \in \mathcal{O}_{K}^{+}$.

- only one indecomposable integer in \mathbb{Z}, namely 1

Results on indecomposable integers

- We know the precise structure of indecomposable integers in quadratic fields $\mathbb{Q}(\sqrt{D})$, where they can be described using the continued fraction of \sqrt{D} or $\frac{\sqrt{D}-1}{2}$ (Perron, 1913; Dress, Scharlau, 1982).

Results on indecomposable integers

- We know the precise structure of indecomposable integers in quadratic fields $\mathbb{Q}(\sqrt{D})$, where they can be described using the continued fraction of \sqrt{D} or $\frac{\sqrt{D}-1}{2}$ (Perron, 1913; Dress, Scharlau, 1982).
- We also know their structure for several families of cubic fields (Kala, T., 2022; T., 2023+).

Results on indecomposable integers

- We know the precise structure of indecomposable integers in quadratic fields $\mathbb{Q}(\sqrt{D})$, where they can be described using the continued fraction of \sqrt{D} or $\frac{\sqrt{D}-1}{2}$ (Perron, 1913; Dress, Scharlau, 1982).
- We also know their structure for several families of cubic fields (Kala, T., 2022; T., 2023+).
- some partial results for biquadratic fields (Čech, Lachman, Svoboda, T., Zemková, 2019; Krásenský, T., Zemková, 2020)

Theorem (Kala, T., 2022)

Let K be the simplest cubic field with $a \geq-1$ such that $\mathcal{O}_{K}=\mathbb{Z}[\rho]$. The elements $1,1+\rho+\rho^{2}$, and

$$
\alpha(v, w)=-v-w \rho+(v+1) \rho^{2}
$$

where $0 \leq v \leq a$ and $v(a+2)+1 \leq w \leq(v+1)(a+1)$ are, up to multiplication by totally positive units, all the indecomposable integers in $\mathbb{Q}(\rho)$.

Theorem (Kala, T., 2022)

Let K be the simplest cubic field with $a \geq-1$ such that $\mathcal{O}_{K}=\mathbb{Z}[\rho]$. The elements $1,1+\rho+\rho^{2}$, and

$$
\alpha(v, w)=-v-w \rho+(v+1) \rho^{2}
$$

where $0 \leq v \leq a$ and $v(a+2)+1 \leq w \leq(v+1)(a+1)$ are, up to multiplication by totally positive units, all the indecomposable integers in $\mathbb{Q}(\rho)$.

We provide analogous results for the simplest cubic fields with the basis $B_{3}(1,1)=\left\{1, \rho, \frac{1+\rho+\rho^{2}}{3}\right\}$.

Universal quadratic forms

Quadratic form $Q\left(x_{1}, \ldots, x_{n}\right)=\sum_{1 \leq i \leq j \leq n} a_{i j} x_{i} x_{j}$ with $a_{i j} \in \mathcal{O}_{K}$ is

- classical if $2 \mid a_{i j}$ for all $i \neq j$,
- totally positive definite if $Q\left(\gamma_{1}, \ldots, \gamma_{n}\right) \in \mathcal{O}_{K}^{+}$for all $\gamma_{i} \in \mathcal{O}_{K}$ not all zero,
- universal over \mathcal{O}_{K} if it represents all elements in \mathcal{O}_{K}^{+}

Universal quadratic forms

Quadratic form $Q\left(x_{1}, \ldots, x_{n}\right)=\sum_{1 \leq i \leq j \leq n} a_{i j} x_{i} x_{j}$ with $a_{i j} \in \mathcal{O}_{K}$ is

- classical if $2 \mid a_{i j}$ for all $i \neq j$,
- totally positive definite if $Q\left(\gamma_{1}, \ldots, \gamma_{n}\right) \in \mathcal{O}_{K}^{+}$for all $\gamma_{i} \in \mathcal{O}_{K}$ not all zero,
- universal over \mathcal{O}_{K} if it represents all elements in \mathcal{O}_{K}^{+}

Theorem

Let K be a simplest cubic fields with basis $B_{3}(1,1)$.

- There exists a diagonal universal quadratic form over \mathcal{O}_{K} with $\frac{a^{2}+3 a}{3}+12 a+12$ variables.
- Every classical universal quadratic form over \mathcal{O}_{K} has at least $\frac{a^{2}+3 a}{54}$ variables.

Pythagoras number

- let \mathcal{O} be a commutative ring
- $\sum \mathcal{O}^{2}=\left\{\sum_{i=1}^{n} \alpha_{i}^{2} ; \alpha_{i} \in \mathcal{O}, n \in \mathbb{N}\right\}$
- $\sum^{m} \mathcal{O}^{2}=\left\{\sum_{i=1}^{m} \alpha_{i}^{2} ; \alpha_{i} \in \mathcal{O}\right\}$
- the Pythagoras number of the ring \mathcal{O} is

$$
\mathcal{P}(\mathcal{O})=\inf \left\{m \in \mathbb{N} \cup\{\infty\} ; \sum \mathcal{O}^{2}=\sum^{m} \mathcal{O}^{2}\right\}
$$

Pythagoras number

- let \mathcal{O} be a commutative ring
- $\sum \mathcal{O}^{2}=\left\{\sum_{i=1}^{n} \alpha_{i}^{2} ; \alpha_{i} \in \mathcal{O}, n \in \mathbb{N}\right\}$
- $\sum^{m} \mathcal{O}^{2}=\left\{\sum_{i=1}^{m} \alpha_{i}^{2} ; \alpha_{i} \in \mathcal{O}\right\}$
- the Pythagoras number of the ring \mathcal{O} is

$$
\mathcal{P}(\mathcal{O})=\inf \left\{m \in \mathbb{N} \cup\{\infty\} ; \sum \mathcal{O}^{2}=\sum^{m} \mathcal{O}^{2}\right\}
$$

Theorem

Let K be a simplest cubic fields with basis $B_{3}(1,1)$. Then the Pythagoras number of \mathcal{O}_{K} is 6.

Note that the Pythagoras number of $\mathbb{Z}[\rho]$ is 6 for $a \geq 3$ (T ., 2023+).

Thank you for your attention.

